Refine Your Search

Topic

Search Results

Technical Paper

CFD Modeling of Mini and Full Flow Burner Systems for Diesel Engine Aftertreatment under Low Temperature Conditions

2012-09-24
2012-01-1949
With introductions of stringent diesel engine emission regulations, the DOC and DPF systems have become the mainstream technology to eliminate soot particles through diesel combustion under various operation conditions. Urea-based SCR has been the mainstream technical direction to reduce NOx emissions. For both technologies, low-temperature conditions or cold start conditions pose challenges to activate DOC or SCR emission-reduction performance. To address this issue, mini or full flow burner systems may be used to increase exhaust temperature to reach DOC light-off or SCR initiation temperature by combustion of diesel fuel. In essence, the burner systems incorporate a fuel injector, spray atomization, proper fuel / air mixing mechanisms, and combustion control as independent heat sources.
Technical Paper

On Chaos and Bifurcation in Nonlinear Driver-Vehicle System Probabilistic Dynamics

2012-04-16
2012-01-0522
The vehicle system is actually a strongly nonlinear system with stochastic parameters. In this paper, the nonlinearities of suspension, tire and seat are analyzed, and the nonlinear dynamics model of driver-vehicle system with 8 degrees of freedom (DOFs) is built. The bifurcation and chaotic motion of the deterministic system under Sinusoid excitations considering the time delay between the front and rear tires are studied. Then, the stochastic feature of the equivalent stiffness and damping coefficients of suspension, tire and seat are assumed to be the normal distribution, and the nonlinear model with random parameters is obtained. The nonlinear dynamics of stochastic nonlinear driver-vehicle system is analyzed and compared through numerical simulation.
Technical Paper

Transient Characteristics of Cold Start Emissions from a Two-Stage Direct Injection Gasoline Engines Employing the Total Stoichiometric Ratio and Local Rich Mixture Start-up Strategy

2012-04-16
2012-01-1068
To improve the cold start performance and to reduce the misfire occurrence at cold start, the start-up strategy of total stoichiometric ratio combined with local rich mixture was applied in the study. The effect of injection strategy (the 1st injection timing, 2nd injection timing, 1st and 2nd fuel injection proportion and ignition timing) on the cold start HC emissions in the initial 10 cycles were investigated in a Two stage direct injection (TSDI) gasoline engine. The transient HC and NO emissions in the initial 10 cycles were analyzed, when the fuels are injected in the only 1st cycle and in the followed all cycles. The transient misfiring HC emissions were compared between the single and two-stage injection modes. In addition, the unburned HC (UBHC) emissions in the 1st cycle are compared among the TSDI engine, Gasoline direct injection (GDI) engine, Port fuel injection (PFI) engine and Liquefied petroleum gaseous (LPG) engine at the stoichiometric ratio.
Technical Paper

STATE OF HEALTH DETERMINATION OF LITHIUM ION CELLS IN AND OUTSIDE THE VEHICLE

2011-05-17
2011-39-7235
There is an enormous effort to implement safety functionality into battery systems to prevent any accidents with the poisonous and inflammable ingredients of the electrolytes and electrode materials. But not only the safety regulation for lithium ion batteries will be different in comparison to the home electronics application, also the operating strategy must be different to guaranty the required lifetime in the automotive industry up to 10-12 years. This paperwork will show an approach to get offline (on test benches) and/or online (installed inside the car) information regarding the current healthy and state inside the cell. As an approach modeling of physical effects by the help of electro impedance spectroscopy (EIS) will be applied.
Technical Paper

Optimization of Control Strategy for Engine Start-stop in a Plug-in Series Hybrid Electric Vehicle

2010-10-25
2010-01-2214
Plug-in hybrid electric vehicles (PHEVs) provide significantly improvement in fuel economy over conventional vehicles as well as reductions in greenhouse gas and petroleum. Numerous recent reports regarding control strategy, power train configuration, driving pattern, all electric range (AER) and their effects on fuel consumption and electric energy consumption of PHEVs are reported. Meanwhile, the control strategy for engine start-stop and mileage between recharging events from the electricity grid also has an important influence on the petroleum displacement potential of PHEVs, but few reports are published. In this paper, a detailed simulation model is set up for a plug-in series hybrid electric vehicle (PSHEV) employing the AVL CRUISE. The model was employed to predict the AER of the baseline PSHEV using rule-based logical threshold switching control strategy.
Book

Road Vehicle Dynamics Problems and Solutions

2010-04-13
This workbook, a companion to the book Road Vehicle Dynamics, will enable students and professionals from a variety of disciplines to engage in problem-solving exercises based on the material covered in each chapter of that book. Emphasizing application more than theory, the workbook presents systematic rules of analysis that students can follow in a step-by-step manner to understand the efficiencies or shortcomings of various techniques. Readers will gain a greater understanding of the factors influencing ride, handling, braking, acceleration, and vehicle safety.
Technical Paper

Stratified Mixture Formation and Combustion Process for Wall-guided Stratified-charge DISI Engines with Different Piston Bowls by Simulation

2010-04-12
2010-01-0595
This paper presents the simulation of in-cylinder stratified mixture formation, spray motion, combustion and emissions in a four-stroke and four valves direct injection spark ignition (DISI) engine with a pent-roof combustion chamber by the computational fluid dynamics (CFD) code. The Extended Coherent Flame Combustion Model (ECFM), implemented in the AVL-Fire codes, was employed. The key parameters of spray characteristics related to computing settings, such as skew angle, cone angle and flow per pulse width with experimental measurements were compared. The numerical analysis is mainly focused on how the tumble flow ratio and geometry of piston bowls affect the motion of charge/spray in-cylinder, the formation of stratified mixture and the combustion and emissions (NO and CO₂) for the wall-guided stratified-charge spark-ignition DISI engine.
Technical Paper

Simulations of Key Design Parameters and Performance Optimization for a Free-piston Engine

2010-04-12
2010-01-1105
To develop a free-piston engine-alternator integrative power system for Hybrid Electric Vehicles, the key design parameters, such as reciprocating mass of the piston assembly, compression ratio, the ignition timing, the engine fuel consumption rate and power output, are studied based on the simulation. The results show that, the system simulation model of the free piston engine can predict the in-cylinder pressure vs. the piston's displacement being accurate enough as the test results from reported reference. The model can be employed to optimize the design parameters and to predict the fuel economy and power output. It provides the methods and bases for the free piston engine design and predicting the main performance parameters' values.
Technical Paper

Damage Identification of Rear Axle Under Experimental Condition from Curvature Mode Change

2010-04-12
2010-01-0930
In this paper the approach of using modal parameters to detect and locate damage of automobile rear axle under experimental condition is explained. This method uses the changes in the curvature mode of the structure as the damage identification indicator to detect and locate damage. The curvature mode and the damage identification indicator are explained, the process of the identification is introduced. The method is demonstrated with a FEM (Finite Element Method) analysis on a plate under different damage conditions. And the indicator is improved with a weighting function. Then EMA (Experimental Modal Analysis) is conducted on a damaged and an undamaged rear axle of a vehicle to get the modal parameters for the damage identification indicator which later identifies and locates the damages, thus validating the introduced method.
Technical Paper

Theoretical Modeling and FEM Analysis of the Thermo-mechanical Dynamics of Ventilated Disc Brakes

2010-04-12
2010-01-0075
Prediction and analysis of the thermo-mechanical coupling behavior in friction braking system is very important for the design and application of vehicle brakes, such as brake judder, brake squeal, brake wear, brake cracks, brake fade. This paper aims to establish a macro-structural model of the thermo-mechanical dynamics of the ventilated disc brake with asymmetrical outer and inner disc thickness, taking into account the friction-velocity curve of the disc pad couple acquired by testing. On the basis of finite elements analysis of the model, the predictions of the thermo-mechanical responses of the brake disc are presented, including disc transient temperature field and normal stress in radial, circular and axial directions, disc lateral deformation and disc thickness variation. Numerical predictions of the disc surface temperature and later distortion are compared with experimental measurements obtained by thermocouples and non-contact displacement sensors.
Technical Paper

Nucleation Mode Particle Emissions from a Diesel Engine with Biodiesel and Petroleum Diesel Fuels

2010-04-12
2010-01-0787
Effects of biodiesel fuel on nucleation mode particles were studied on a direct injection, high pressure common-rail diesel engine for passenger cars. Particle number and size distribution of the diesel engine were obtained using an Engine Exhaust Particle Sizer (EEPS). The base petroleum diesel, three different blend ratios of petroleum diesel/biodiesel (10%, 20% and 50% v/v biodiesel blend ratios), and the pure biodiesel fuel (obtained and converted from Jatropha seed in China) (B0, B10, B20, B50 and B100 fuels) were tested without engine modification. Experiments were performed on a series of engine operating conditions. The particle number size distribution of the engine shows unimodal or bimodal log-normal distribution. With the biodiesel blend ratios increasing, the number of nucleation mode particles increases at all test engine operating conditions and accumulation mode particles decreases at most engine operating conditions.
Technical Paper

Research on Vehicular Hydrostatic Energy Storage Transmission and Its Control System

1997-11-17
973179
Although Hydrostatic Transmission System (HTS) had been used in many places, such as machine tools, agriculture machinery, construction machinery, and vehicles, it had not been used in good performance. Twenty years ago many people began to design new hydrostatic transmission with higher efficiency. Hydrostatic Energy Storage Transmission System (HESTS) is one of new hydrostatic transmission system with higher efficiency. HESTS is more fit for being used in vehicle that is always running in undulating ground or starting and braking frequently. Construction of vehicular HESTS was analyzed, mathematical model of vehicular HESTS was established. The needed control strategies of vehicular HESTS were analyzed because there are many variables would be controlled in the new transmission system.
Technical Paper

The System Identification for the Hydrostatic Drive System of Secondary Regulation Using Neural Networks

1996-10-01
962231
In this paper, the system identification theory and method using dynamic neural networks are presented, the multilayer feedforward networks employed, the backpropagation with adaptive learning rate algorithms proposed. Finally the comparision of network output with that of the hydrostatic drive system of secondary regulation is given, and output error, sum-squared error et al, or the results that embody the effect of system identification given sine input to it are provided.
X